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Is the concept of the non-Hermitian effective Hamiltonian relevant in the case
of potential scattering?

Dmitry V. Savin,1,2 Valentin V. Sokolov,2 and Hans-Ju¨rgen Sommers1
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We examine the notion and properties of the non-Hermitian effective Hamiltonian of an unstable system
using as an example potential resonance scattering with a fixed angular momentum. We present a consistent
self-adjoint formulation of the problem of scattering on a finite-range potential, which is based on the separa-
tion of the configuration space into two segments, internal and external. The scattering amplitude is expressed
in terms of the resolvent of a non-Hermitian operatorH. The explicit form of this operator depends on both the
radius of separation and the boundary conditions at this place, which can be chosen in many different ways. We
discuss this freedom and show explicitly that the physical scattering amplitude is, nevertheless, unique, al-
though not all choices are equally adequate from the physical point of view. Theenergy-dependentoperatorH
should not be confused with the non-Hermitian effective HamiltonianHeff which is usually exploited to
describe interference of overlapping resonances. We note that the simple Breit-Wigner approximation is as a
rule valid for any individual resonance in the case of few-channel scattering on a flat billiardlike cavity, leaving
no room for nontrivialHeff to appear. The physics is appreciably richer in the case of an open chain ofL
connected similar cavities whose spectrum has a band structure. For a fixed band ofL overlapping resonances,
the smooth energy dependence ofH can be ignored so that the constantL3L submatrixHeff approximately
describes the time evolution of the chain in the energy domain of the band and the complex eigenvalues ofHeff

define the energies and widths of the resonances. We apply the developed formalism to the problem of a chain
of L d barriers, whose solution is also found independently in a closed form. We constructHeff for the two
commonly considered types of boundary conditions~Neumann and Dirichlet! for the internal motion. Although
the final results are in perfect coincidence, somewhat different physical patterns arise of the trend of the system
with growing openness. Formation in the outer well of a short-lived doorway state shifted in energy is
explicitly demonstrated together with the appearance ofL21 long-lived states trapped in the inner part of the
chain.

DOI: 10.1103/PhysRevE.67.026215 PACS number~s!: 05.60.Gg, 03.65.Nk, 24.30.2v, 73.23.2b
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I. INTRODUCTION

To the best of our knowledge, the concept of the no
Hermitian effective Hamiltonian appeared first in Feshbac
papers@1,2# in connection with the general theory of res
nance nuclear reactions@3,4# and, independently, in Livsˇic’s
study of open systems@5,6#. A typical atomic nucleus forms
near an excitation energyE above the threshold of nucleo
emission a rich set of long-lived compound states with a v
dense energy spectrum. For relatively small excitation e
gies, these states manifest themselves as narrow iso
resonances in collisions of nucleons and target nuclei.
sharp energy dependence of the corresponding cross sec
near a given resonance is described by the universal B
Wigner formula. Any smoother variations can be ignored
the domain of an isolated resonance. At higherE, the reso-
nance states begin to overlap and strongly interfere. Ne
theless, one can still neglect the smooth energy depend
within a group of close interfering resonances. In this a
proximation, the propagation of the unstable system crea
in the intermediate stage of the collision is characterized
the resolvent of an energy-independent non-Hermitian ma
@7#. The latter describes in the time picture the irreversi
evolution of the excited intermediate state and can there
be interpreted as the effective HamiltonianHeff whose anti-
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Hermitian part, originating from on-shell self-energy cont
butions, is responsible for decays into open channels.
complex eigenvalues of the effective Hamiltonian determ
the energies and widths of the resonances. The method o
effective Hamiltonian proved to be a success for describ
many important resonance phenomena, especially in the
text of chaotic scattering@8–14#.

It must be stressed that, similar to the Breit-Wigner fo
mula, the notion of the effective Hamiltonian islocal in en-
ergy although the general approaches@3,4# work in much
wider energy intervals where smooth variations become
portant and should already be taken into account. For
very concept of the effective Hamiltonian to be consiste
the scales of resonant and smooth variations must be ap
ciably different. Otherwise the resonance behavior of scat
ing amplitudes will be distorted or even completely d
stroyed. The smooth dependence influences the backgro
phases as well as the parameters of the resonances situa
different energy domains. Such effects cannot be descr
by simply enlarging the dimension of the matrix of the e
fective Hamiltonian. Instead, a large energy-dependent
trix H(E) emerges whose simple interpretation as a tim
shift operator is no longer valid. There is, generally, no on
to-one correspondence between the complex energie
resonance states on the one hand and theE-dependent eigen
values of this large matrix on the other.
©2003 The American Physical Society15-1
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SAVIN, SOKOLOV, AND SOMMERS PHYSICAL REVIEW E67, 026215 ~2003!
The current intensive studies, theoretical as well as
perimental, of chaotic scattering of a particle by an op
two-dimensional cavity ~see, e.g., @15# and references
therein! renewed interest in the Hamiltonian approach to
resonance scattering theory and, in particular, to the con
and properties of the effective non-Hermitian Hamiltoni
@16–18#. Although the scattering processes considered
purely potential, the theory is formulated in close analo
with the formalism developed in@1–4# for nuclear collisions.
The configuration space is divided into two parts, inter
and external. The Feshbach projection technique is emplo
to express the scattering matrix in the specific form that
plicitly reveals the sharp resonant energy dependence w
all smoother variations show up only indirectly via chang
of the matrix elements. Related is the problem of elect
magnetic field quantization in open optical cavities@19#.

While the probability amplitudes of the physical pr
cesses are fixed unambiguously, the projection procedure
ploited is not unique. There exists a rather wide freedom
choosing the surface of separation as well as the boun
conditions~BCs! on this surface. Therefore, the amplitud
of interest are expressed in terms of quantities that depen
the details of the formalism. The independence of the fi
results of the calculations is not, as a rule, directly se
Therefore a certain caution is necessary to avoid incor
assertions. An unexpected dependence on the~auxiliary!
boundary condition at the cavity-lead interface was fou
for example, in@17#. Moreover, poor agreement with numer
cally calculated exact poles of theS matrix was revealed for
poles distant from the real axis. These points, partly att
uted by the authors to numerical limitations, require furth
clarification. Additional physical arguments should som
times be involved to reasonably restrict the freedom.

It is important to recognize that the density of levels
billiardlike cavities is much lower than that of the man
body nuclear systems. Actually, strong overlap and inter
ence of different resonance states are not, as a rule, pos
in the single two-dimensional cavities ordinarily consider
@17#. The simple Breit-Wigner approximation is usually su
ficient in this case for any individual resonance~see, e.g.,
@20,21#!. Noticeable interference can occur only in the ra
event of accidental near degeneracy of resonances. Ex
mental observation of such an interference of few resonan
in an open microwave cavity has recently been reported
@22#. Stronger overlap and a nontrivial effective Hamiltoni
matrix can, however, appear when open chains of a num
of similar potential wells connected to each other are con
ered. The energy spectrum has a band structure in this
with much denser spectrum within a given band. A schem
model of such a kind was considered in@23#. A similar ex-
ample was also investigated in@13# in the framework of
graph theory@24#. Some general aspects of scattering in p
riodic structures have also been considered in@25#.

In this paper we examine the notion of the effecti
Hamiltonian in potential scattering. The questions we
concerned with do not depend on the regular or irregu
character of the motion. Thus we restrict ourselves to
simplest case of the single-channels-wave scattering. The
extension to higher partial waves is straightforward. A co
02621
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sistent self-adjoint formulation of the problem of scatteri
on a finite-size potential in terms of the internal and exter
subproblems is presented in Sec. II. The~one-dimensional! S
matrix is expressed in terms of a non-Hermitian ener
dependent operatorH whose form, together with the form o
the associatedR function ~Sec. III!, depends on the BC an
the radiusa of separation in the configuration space. Diffe
ent BCs define different representations of the internal
external parts of the~unique! scattering wave function. The
role of the fictitious direct reflection at the separation poina
is also discussed.

In Sec. IV the exactly solvable open Kronig-Penn
model is considered as an example of potential scatte
with interfering resonances. Closed expressions are found
both scatteringS(k) and staying-waveK(k) functions as
well as Wigner’s functionR(k). Their analytical properties
in the complexk and energy planes are analyzed in deta
Hereafter we compare these exact results with those obta
in the framework of the projection formalism of the previo
sections. We analyze two typical choices of the BCs for
internal motion: the cases of Neumann and Dirichlet BCs
the second case, the internal problem corresponds to a cl
counterpart of the system under consideration which allo
one to follow the changes of the motion due to the interf
ence of resonances when the openness grows. The latter
line with numerous applications considered in the literatu
Non-Hermitian effective Hamiltonians for a fixed band
resonance states are built up in both cases. We summ
our main findings in the concluding Sec. V.

II. SEPARATION OF THE HILBERT SPACE

The radial motion in thes-wave scattering is described b
the Schro¨dinger equation~we use the units\2/2m51
throughout the paper!

S 2
d2

dr2
1U~r !D x~r !5k2x~r ! ~1!

with the boundary conditionx(0)50 at the origin. We use
below the specific method which, basically, goes back
Bloch’s paper@26# ~see also@27#!. However, we present a
derivation which leads to interrelated boundary problems
internal and external regions. Making use of Heaviside’s s
function one can decompose the wave function into inter
and external parts as follows:

x~r !5u~r !u~a2r !1f~r !u~r 2a!, ~2!

where the functionsu andf are supposed to be continuous
the pointa together with their two first derivatives. The pa
tition radiusa can be chosen arbitrarily; we suggest only th
U(r .a)[0. The second derivative of the function~2! reads

x9~r !5u9~r !u~a2r !1f9~r ! u~r 2a!1@f8~a!

2u8~a!# d~r 2a!2@u~a!2f~a!#d8~r 2a!.

~3!
5-2
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IS THE CONCEPT OF THE NON-HERMITIAN . . . PHYSICAL REVIEW E67, 026215 ~2003!
When substituting this expression into Eq.~1!, there exists a
freedom in attributing the local terms in Eq.~3! to the inter-
nal or external regions. One possible choice is to define
singular functions asd(r 2a2)[^r ua2&5^a2ur & and d8(r
2a1)52(d/da1) d(r 2a1)[2^r ua1&852^a1u8r &,
wherea65a60, thus considering the first as belonging
the internal subspace and the second to the external
respectively.

With such definitions, we can represent Eq.~1! in the
form

S H int
(N) V

V† Hext
(D)D S u

f D 5k2S u

f D , ~4!

with the following entries:

H int
(N)5K̂1U1ua2&^a2u8, ~5a!

Hext
(D)5K̂1ua1&8^a1u, ~5b!

V52ua2&^a1u8, V†52ua1&8^a2u, ~5c!

whereK̂ stands for the kinetic energy operator. In particul
in the coordinate representation the matrix elements of
entries take the form

^r uH int
(N)ur 8&5F2

d2

dr2
1U~r !Gd~r 2r 8!

2d~r 2a2!d8~r 82a2!, ~6a!

^r uHext
(D)ur 8&52

d2

dr2
d~r 2r 8!2d8~r 2a1!d~r 82a1!,

~6b!

^r uVur 8&5^r 8uV†ur &5d~r 2a2!d8~r 82a1!. ~6c!

The presence of the singular terms assures Hermiticity of
operatorsH int andHext in contrast toK̂ alone@26#. The rela-
tions ^u1uH intu2&5^H intu1uu2&, etc., can be easily checke
by means of partial integrations. The singular operators
the boundary provide the boundary conditions, the first o
Neumann for the internal region, the second one Dirichlet
the external region. Equation~3! implies that both BCs are
interrelated. This also leads to the adjointness of the coup
operatorsV and V†. The Dirichlet boundary operator is es
sentially different from that of Neumann type and cannot
produced by the boundary operators as used in@26#.

The range of operators in Eq.~6! within the Hilbert space
is defined by the functions on which the singular terms v
ish. This requirement fixes the BCs at the point of separa
a. The full Hilbert space is a direct sum of the space span
by the eigenvectors of the internal problem 0,r ,a with
Neumann BC,

S 2
d2

dr2
1U~r !D un

0~r !5«n
(N)un

0~r !, un
08~a!50, ~7!
02621
e

ne,

,
e

e

n
e
r

g

e

-
n
d

and that spanned by the eigenvectors of the external prob
r .a with Dirichlet BC,

2
d2

dr2
fk

0~r !5k2fk
0~r !, fk

0~a!50, k>0. ~8!

The type of BC is explicitly indicated by the correspondin
superscripts in Eqs.~4!–~6!. As usual, we assume normaliza
tion conditions

E
0

a

un
0~x!um

0 ~x!dx5dnm , ~9a!

E
a

`

fk
0~x!fk8

0
~x!dx5d~k2k8! ~9b!

in the discrete and continuous spectra, respectively. The
ternal function

fk
0~r !5A2

p
sin@k~r 2a!#}e2 ikr2e22ikaeikr ~10!

describes a wave fully reflected at the pointa, the corre-
spondingS function being equal toS0

(D)(k)5e22ika.
One can also proceed in the opposite way and ascribe

terms withd8 and withd to the internal and external region
respectively. In this case, the entries in Eq.~4! read

H int
(D)5K̂1U2ua2&8^a2u, ~11a!

Hext
(N)5K̂2ua1&^a1u8, ~11b!

Ṽ5ua2&8^a1u, Ṽ†5ua1&^a2u8. ~11c!

That corresponds to the nonperturbed internal problem w
Dirichlet BC vn

0(a)50, when the external one has Neuma
BC wk

08(a)50. The latter results in an additional shift b
p/2 of the reflection phase at the separation pointa:
S0

(N)(k)52S0
(D)(k)5e22i (ka1p/2).

The interplay of the internal and external motions due
the off-diagonal elementsV @Eq. ~5c!#, distorts the outer
wavesf. From the upper row in Eq.~4! we find for all k2

Þ«n , n51,2, . . . ,

u5
1

k22H int

Vf[GintVf. ~12!

HereGint is the resolvent operator for the internal proble
Then, the lower row transforms into

~k22Hext2V†GintV! f50, ~13!

or, in the position representation,

S k21
d2

dr2D f~r !1d8~r 2a1!@f~a!1Gint
(N)~a,a!f8~a!#50,
5-3



C

s

T
te

ita
b

s
f t

a

in
at
-

f

n

-

ins

der-

m

the
-

-

e
r
that
al
h

en-

at-
y
rms
-
al

SAVIN, SOKOLOV, AND SOMMERS PHYSICAL REVIEW E67, 026215 ~2003!
S k21
d2

dr2D f~r !2d~r 2a1!@f8~a!2Gint
(D)9~a,a!f~a!#50

for the two cases considered. This yields change of the B
of the external part of the exact wave function to

f~a!1Gint
(N)~a,a!f8~a!50, ~14a!

f8~a!2Gint
(D)9~a,a!f~a!50, ~14b!

where the shorthand

Gint
(D)9~a,a![

]2

]r ]r 8
Gint

(D)~r ,r 8!ur ,r 8→a ~15!

has been used. Let us note that Eq.~14a! is the conventional
boundary condition in the Wigner-EisenbudR-matrix theory
of resonance nuclear reactions@4,28#.

III. S AND R FUNCTIONS

In the external regionr .a, where the potential vanishe
identically, the wave function has the formf(r )5const
3@e2 ikr2S(k)eikr #. Therefore, the conditions~14! obtained
above allow us to express the function

S~k![e2id(k)5
11 ikf~a!/f8~a!

12 ikf~a!/f8~a!
e22ika ~16!

in terms of the internal Green’s functions,

S~k!5
12 ikGint

(N)~a,a!

11 ikGint
(N)~a,a!

S0
(D)~k! ~17a!

5
12~ i /k!Gint

(D)9~a,a!

11~ i /k!Gint
(D)9~a,a!

S0
(N)~k!. ~17b!

Both expressions are exact and equivalent to each other.
only difference is that they are written in different comple
bases in the full Hilbert space. The merits as well as lim
tions of each of these representations will be discussed
low.

We define further the phase shiftsd (N,D)(k) due to the
influence of the internal region and the functionsR(N,D)(k)
[22tand (N,D)(k) by

R(N)~k!52kGint
(N)~a,a!52k (

n

un
0~a!un

0~a!

k22«n
(N)

, ~18a!

R(D)~k!5
2

k
Gint

(D)9~a2 ,a!5
2

k (
n

vn
08~a2!vn

08~a!

k22«n
(D)

.

~18b!

The spectral representations of the Green’s function are u
here in the last steps. This shows that the energy levels o
corresponding internal problems are real poles of theR func-
tions in the complex energy plane. The formulas obtained
02621
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in close analogy with the representations found in@17# in a
different way. They are quite similar to those appearing
the R-matrix theory@4,28#. We should, however, stress th
the functionsR defined in our manner differ from the stan
dard Wigner’sR function by trivial factors like22k or
22/k, which we include in the definition for the sake o
convenience.

A certain caution is needed while taking the limitr ,r 8
→a in Eq. ~18b! since the derivative of the Green’s functio

Gint
(D)~r ,r 8!5u~r 82r !x1

0~r !x2
0~r 8!

1u~r 2r 8!x1
0~r 8!x2

0~r !

5(
n

vn
0~r !vn

0~r 8!

k22«n
(D)

~19!

has a discontinuity whenr 5r 8. The symbolsx1
0(r ) and

x2
0(r ) stand for solutions of the internal problem with Dirich

let BCs only at the pointsr 50 or r 5a, respectively. It is
readily seen that the mixed second partial derivative conta
a singular contribution

@x1
08~r !x2

0~r !2x1
0~r !x2

08~r !#d~r 2r 8!5Wd~r 2r 8!,
~20!

W521 being the Wronskian. This singularity atr 5r 85a
must be excluded and the second derivative must be un
stood as

Gint
(D)9~a2 ,a!5x1

08~a!x2
08~a!. ~21!

It immediately follows from this remark that the spectral su
(nvn

08(r ) vn
08(r 8)/(k22«n

(D)) diverges whenr 5r 8. Indeed,
convergence of this sum depends on the contributions of
very high levels,n→`. For such an excitation, we can ne
glect the potentialU(r ), whereupon the solution of the in
ternal problem reduces simply tovn

0(r )5A2/asin(np r/a).
The contributiond(r 2r 8) to be dropped appears due to th
factor «n

(D)5(pn/a)2, which arises in the numerator afte
the double differentiation has been done. It is easy to see
just a contribution of this kind mainly caused the numeric
problems in@17#. For rÞr 8, the sum converges, althoug
slowly, to the finite limit~21! because of oscillations@29#.

It would be a mistake to rely upon the spectral repres
tations in Eq.~18!, and interpret the eigenvalues«n as the
energies of resonance states and the phasesd0

(D)(k)5ka or
d0

(N)(k)5ka1p/2 as smooth phases of the background sc
tering. Indeed, the levels«n depend on what sort of boundar
conditions have been used. More than that, many other fo
of BC are equally permissible~see, for example, the funda
mental review@28#!. It can be shown that the most gener
possible BCs,

u08~a!1b intu
0~a!50, f08~a!1bextf

0~a!50, ~22!

involve two arbitrary parametersb ~here we include for-
mally b56` for the Dirichlet BCs!. Returning to Eq.~17!,
5-4
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IS THE CONCEPT OF THE NON-HERMITIAN . . . PHYSICAL REVIEW E67, 026215 ~2003!
we see that, due to the relationS0
(N)(k)52S0

(D)(k), the lev-
els «n

(D) arezerosof the functionR(N)(k) and, similarly, the
levels«n

(N) are zeros ofR(D)(k). In fact, the two phases ar
connected as

tand (D)~k!52cotd (N)~k!5tan@d (N)~k!2p/2#. ~23!

The shift p/2 just compensates the similar shift ofd0
(N)(k)

and the total scattering phased(k)5d (N)(k)1d0
(D)(k)

5d (D)(k)1d0
(N)(k) does not depend on the type of BC use

In particular, the positions of the poles of the functionS(k)
in the complexk plane, which are found from the equatio

12 i tand (D)~k!50512 i tand (N)~k!, ~24!

are BC independent because of the relation~23!. This is in
agreement with the fact that both factorsS0

(D,N) are entire
functions in thek plane.

The factorized form of the residues of poles in Eq.~18!
allows one to represent the functionS(k) in a different but
fully equivalent form as

S~k!5S 12 iAT
1

k22HAD S0~k!, ~25!

where the non-Hermitian symmetric operatorH is defined by

H~k!5«2
i

2
AAT. ~26!

Here« is a diagonal matrix of the eigenvalues of the cor
sponding internal problems and the column vectorA(k) of
the coupling amplitudes, which originate from the o
diagonal elementV in Eq. ~4!, has the components

An
(N)~k!5A2kun

0~a! or An
(D)~k!5A2

k
vn

08~a! ~27!

in the cases of Neumann or Dirichlet BCs, respectively
proof of equivalence to the expressions~17! immediately
comes from the following relation between resolvents~see,
for example,@9#!:

1

k22H 5Gint2
i

2
Gint A

1

11~ i /2!R
ATGint . ~28!

It follows from Eq. ~25! that the poles of theS function
can also be found from the secular equation

det@z22H~z!#50, ~29!

wherez is a point in the complexk plane. In the position
representation this is equivalent to the spectral problem w
a complex~outgoing-wave! boundary condition

S 2
d2

dr2
1U~r !D c~r !5z2c~r !, ~30a!

c8~a!2 izc~a!50. ~30b!
02621
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This clearly demonstrates again the independence of
choice of BCs for disconnected internal and external m
tions.

Actually, the form of the operator~26! is provocative. One
is tempted to interpret this operator as an effective Ham
tonian whosek-dependenteigenvalues define complex ene
gies of metastable resonance states formed by the pote
U(r ). However, this interpretation is, generally, wrong. T
make our points clearer, let us start with the following simp
remark. Let the potential vanish identically everywhe
U(r )[0, so that theS function S(k)[1. Nevertheless, nei
ther the operatorH nor the function

S̃~k!512 iAT
1

k22H A ~31!

are trivial in themselves. For example, in the case of N
mann BCs the matrix elements ofH are

H mn
(N)5

1

a2 F S m1
1

2D 2

p2dmn2 ika~21!(m1n)G . ~32!

Any truncated finite-sizeN3N matrix obtained from Eq.
~32! gives, when substituted in Eq.~29!, N pairs of complex
roots. However, the complex poles of the resolvent@z2

2Htrunc(z)#21 of the truncated matrix have nothing to d
with the poles of the genuineS function. The truncation pro-
cedure is not stable whenN→`. The difficulties become
even worse in the case of Dirichlet BCs when the imagin
part also grows,

H mn
(D)5

1

a2 Fm2p2dmn2 ip2
mn

ka
~21!(m1n)G . ~33!

In fact, all poles found go to infinity in the limitN→`.
Indeed, the true poles because of the identity det@z2

2H(z)#5det(z22H int)@11( i /2)R(z)#, must satisfy the
equation

11
i

2
R~z!50, ~34!

which is equivalent to Eq.~24!. For example, in the case o
Neumann BCs this equation runs as 11 izGint

(N)(a,a)50. In
particular, when the potentialU(r ) vanishes identically, the
Green’s function in thez plane is equal toGint

(N)(a,a)
52(1/z) tanza, and Eq.~34! looks like 12 i tanza50 and,
therefore, has no roots in any finite domain of this pla
This implies, in turn, that Eq.~30! has no nontrivial solu-
tions. In fact, the function~31! is simply equal toS̃free(k)
5e2ika in this case and compensates exactly the phase
due to the fictitious reflection at the separation pointa.

The remark above is of quite a general nature. The rad
of separation can be chosen arbitrarily. For the sake of s
plicity, we suggest only thata is larger than the finite radius
of the potential. The actual wave function satisfies at t
point the conditions
5-5
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f~a!5u~a!, f8~a!5u8~a!. ~35!

Of course, none of these quantities is known before the p
lem has been solved. Any boundary condition used ab
generates a complete basis in the Hilbert space, in which
actual wave functions can be expanded. All such bases
formally equivalent. But this does not mean that all of the
are equally adequate from the physical point of view. In p
ticular, the more the basis eigenvectors and their derivat
differ at the pointa from the real values~35! the more slowly
the corresponding expansion converges near this point.

A forced BC creates a false reflection at this point, wh
is described by the factorS0(k), whose phase should be full
compensated by the similar part of the total phase of
function S̃(k). Both factors separately depend ona although
the complete functionS(k) does not. The main role in thi
compensation is played by the matrix elementsHmn with
large m,n when the influence of the potentialU becomes
negligible, and we return to the situation described in
previous paragraph.

However, the choice of the separation radius and BC
fluences the positions of the poles~as well as the residues! of
the functionR and, consequently, the explicit form of th
matrix Hmn . This influence is stronger the less adequate
choice made of BC anda. In general, the parameters of theR
function can carry rather poor information about the act
complex poles. For this reason, diagonalization of a tr
cated matrixHmn ~which is necessary in any numerical com
putation! can lead in the case of a poor choice to stro
disagreement with the characteristics of the actual pole
the functionS. The explicit dependence of the matrix el
mentsHmn on the wave numberk causes additional prob
lems ~see next section!. To extract the physically relevan
effective Hamiltonian from the formal operatorH, additional
physical considerations must be engaged. For example,
may expect from the physical point of view that the mo
relevant choice of the separation pointa would be a distance
matching an outer potential barrier which is strong enough
make immediate reflection at this point quite probable.

To explore in more detail the questions briefly discuss
above, we will apply in the next section the formal techniq
sketched here to the problem of scattering by a finite perio
set ofd barriers, which can be solved exactly.

IV. OPEN KRONIG-PENNEY MODEL

A. Exact solution

We will consider belows-wave scattering by a periodi
cally disposed chain ofL d barriers,

U~r !5(
l 51

L

k ld~r 2 l !. ~36!

To ensure formation of long-lived resonance states, at l
some of the strength constantsk l should be positive. The
distancer is measured in units of the size of the well form
by two neighboring barriers. Below, we derive the effecti
Hamiltonian starting directly the Schro¨dinger equation.
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Because of the local character of the barriers, it is m
convenient to start from, instead of the Schro¨dinger equation,
the equivalent integral equation

x~r !5sin~kr !1E
0

`

dr8G1
0 ~r ,r 8!U~r 8!x~r 8!

5sin~kr !1(
l 51

L

k lG1
0 ~r ,l ! x~ l !. ~37!

Here the symbolG1
0 (r ,r 8)52(1/k)g0(r ,r 8) with

g0~r ,r 8!5u~r 82r !sin~kr !eikr 81u~r 2r 8!sin~kr8!eikr

stands for the Green’s function of the free radial motio
which has an outgoing-wave asymptotic. From the sec
line in Eq. ~37! we find immediatelyS(k)512 iT(k) where
the scattering amplitude is given by

T~k!5
2

k (
l 51

L

k l sin~kl !x~ l !5
2

k
sTkx. ~38!

In the second equality we have used matrix notation, wits
and x being L-dimensional vectors with the componentssl
[sl(k)[sin(kl) and x l[x( l )( l 51,2, . . . ,L), respectively,
whenk5diag$k1 ,k2 , . . . ,kL%.

According to Eq.~37!, the L-dimensional vectorx satis-
fies the equationx5s1G0kx, whereG052(1/k) g0 and
g0 is a symmetric non-Hermitian matrix with the matrix e
ements

gll 8
0

5H sin~kl !eikl 8 if l< l 8

sin~kl8!eikl if l . l 8.
~39!

Thus, we obtain finally

S~k!5e2id(k)512 isTG~k!s5
12~ i /2!K~k!

11~ i /2!K~k!
, ~40a!

K~k!522 tand~k!5sTG~k!s, ~40b!

where we have used the factorized form Img05ssT of the
anti-Hermitian part of the matrixg0 to pass from the first to
the second equality. TheL3L matrix propagators

G~k!5
2

kl1g0
and G~k!5

2

kl1Re g0
~41!

are connected with one another by a relation similar to
~28!. The diagonal matrixl5k21 characterizes the penetra
bilities of the barriers@30#. The poles of theS function are
defined by the equation

det@zl1g0~z!#50511
i

2
K~z!. ~42!

All the matrix elements~39! are entire functions in the
complexz plane. The same is valid for the determinant in E
~42!. Therefore, one can show that this equation has an
5-6
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nite number of isolated complex roots. Further, its roots
cause of the relation@gll 8

0 (z)#* 52gll 8
0 (2z* ) come in pairs

zn andz2n[2zn* , n51,2, . . . , symmetrically with respec
to the imaginary axis, or lie on the latter,zq5 iyq . All poles
of the first type are situated in the lower part of the comp
plane. Poles on the positive half of the imaginary axis,yq
.0, correspond to bound states and can appear only if s
number of the constantsk l are negative. Those which ar
situated on the negative part,yq,0, correspond to the so
called virtual levels. The total number of purely imagina
poles is finite for any finiteL.

After all poles have been found, the functionS(k) can be
presented in the form

S~k!5 )
n51

`
~k1zn!~k2zn* !

~k2zn!~k1zn* !
)

q

k1 iyq

k2 iyq
, ~43!

where we took into account thatS(k5`)51, sinced barri-
ers become transparent for a particle with asymptotic
large energy. These expressions are in agreement with
general theory@31,32#, which is valid for any potential with
a finite radius.

Each factor in Eq.~43! is singly unitary. In particular, for
a pairz6n of conjugate roots we have

Sn~k![
~k1zn!~k2zn* !

~k2zn!~k1zn* !

5
k22uznu212ik Im zn

k22uznu222ik Im zn

[e2idn(k). ~44!

Since Imzn,0, the phasedn(k) increases when the energ
E5k2 grows, and passes the valuep/2 at the pointE
5uznu2[En . The typical energy intervalDE of the main
gain of the phase is estimated by the quantity 2kuIm znu. If
this interval is small enough and the latter quantity does
vary appreciably within it, the total gain is close top and the
factor Sn receives the standard Breit-Wigner resonance fo

Sn
(res)~k!5

E2En2~ i /2!Gn

E2En1~ i /2!Gn
[

E2En*

E2En
, ~45!

with the energyEn[Re En and widthGn[22Im En of the
resonance defined as follows

En5uznu2, Gn54uRe zn Im znu. ~46!

The k dependence is neglected in the definition of the wi
and the substitutionk5AE'uRe znu has been made. Such
substitution is well justified when the scattering energy
large enough, but becomes improper nearE50. Due to the
‘‘threshold’’ AE dependence of the widths, some specific b
havior takes place when in the proximity of this point the
exists a number of bound and decaying states@23,33,34#.

We conclude that the scattering amplitudeT(k)5 i @S(k)
21# is a meromorphic function in thez plane and can there
fore also be written down as an infinite sum of the po
contributions
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T~k!5 (
n52`

`
%n

k2zn
1(

q

%q

k2 iyq
, ~47!

where the residues%n,q can easily be found from Eq.~43!.
Another representation of the scattering amplitude som

times considered in the literature ensues from diagonal
tion of the ~finite in our case! matrix G(k) at a given fixed
realk. Since this matrix is complex symmetric, such a diag
nalization is performed by a complex orthogonal transform
tion defined together with thecomplexeigenvalue matrix
L(k)5diag$L1(k),L2(k), . . . ,LL(k)% from the equation

@kl1g0~k!#C~k!5C~k!L~k!. ~48!

The scattering amplitude reduces then to a finite sum

T~k!52(
l 51

L
@sT~k!C ( l )~k!#2

L l~k!
, ~49!

whereC ( l )(k) is the l th eigenvector. However, such a repr
sentation is of limited practical use inasmuch as the term
the sum are, generally, extremely complicated. There is
simple interpretation of a given term and all of them can g
comparable contributions. The compatibility of the two re
resentations~47! and ~49! is very indirect. A particular term
of the second one cannot be uniquely continued from the
axis at an arbitrary pointz in the complex plane because bo
C ( l )(z) and L l(z) are multivalued functions in this plane
The same is, of course, also true for the opposite direct
Therefore, even if a rootzj

l of the equationL l(z)50 is found
and near this point the pole approximation

Tj
l ~z!'

2 @sT~zj
l !C ( l )~zj

l !#2/L l8~zj
l !

z2zj
l

~50!

is valid, this expression cannot, generally speaking, be c
tinued on the real axis by simply substitutingz→k, since the
power expansionL l(z)5L l(zj

l )1L l8(zj
l )(z2zj

l )1••• has a
finite radius of convergence. Further, for any fixedl a set of
roots exists depending on the branch of the functionL l(z)
considered. There is no one-to-one correspondence betw
the set of rootszj

l and the manifold of actual poleszn,q that
appears in the expansion~47!. Many of the rootszj

l are false
and their contributions must finally cancel out. Therefo
diagonalization of the propagator with nontrivial energy d
pendence is not as a rule useful; rather it can lead to m
leading conclusions.

We compare below the closed expressions Eq.~40! found
with the formalism described in the previous section. In c
respondence with our remark at the end of Sec. III, we fix
separation pointa by superposing it on the position of th
outer barrier,a5L. The appearance of an additionald func-
tion changes the corresponding boundary conditions.
5-7
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particular, if thed terms are ascribed to the internal regio
the Neumann BC~7! for the internal problem is replaced b

kLu0~a!1u08~a!505u0~a!1lLu08~a!, ~51!

whereas attributing such terms to the external domain yie
the following change of the BC of the external problem:

kLf0~a!2f08~a!505f0~a!2lLf08~a!. ~52!

We stress that neither of these conditions coincides w
the boundary conditions

x~a2!5x~a1![x~a!,
~53!

x8~a1!2x8~a2!5kLx~a!

satisfied by the exact wave functionx(r ).
In the case~52!, the immediate reflection at the pointa is

described instead ofS0
(N) by

S0~k!5S0
(N) k2 ikL

k1 ikL
5

11 ilLk

12 ilLk
S0

(D) . ~54!

@Recall thatS0
(D)(k)5e22ika[e22ikL.# The additional factor

is due to the influence of the barrier outside the radius
separationa. This factor has a polek52 ikL on the negative
part of the imaginary axis, which formally corresponds to
virtual Wigner level. Actually, such a pole does not exist
the exact solution and disappears due to cancellation with
contribution of the internal region@see Eq.~95! below#.

B. Internal problem with Neumann BC

The exactS function in the case of the BC~51! reads
S(k)5S̃(k)S0

(D)(k), where

S̃~k!5
12~ i /2!R

11~ i /2!R
512 i T̃~k!, ~55!

with

R~k!5ÃT
1

k22H int
(N)

Ã52kGint
(N)~a,a!

52klL
2 (

n51

` un
08~a! un

08~a!

k22«n
(N)

~56!

and

T̃~k!5ÃT
1

k22H (N)
Ã. ~57!

The coupling amplitudes are equal to

Ãn~k!5A2kun
0~a!52lLA2kun

08~a!. ~58!

Finally, the matrix elements of the operatorH (N) @see Eq.
~26!# appear as
02621
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H mn
(N)5«m

(N)dmn2 ikum
0 ~a!un

0~a!

5«m
(N)dmn2 ilL

2kum
0 8~a!un

08~a!, ~59!

with the levels«n
(N) being the eigenvalues of the intern

problem with the BC~51!. For the sake of simplicity, we us
the same superscript N as before.

In spite of the seemingly similar general structure of t
expressions~40!,~41! on one hand and~55!–~57! on the
other, they are, in essence, quite different. The most imp
tant distinction shows itself in the dimension of the vecto
and matrices, which isfinite and coincides with the numbe
of barriers in the first case, andinfinite in the second. In
addition, the factorS0(k) of the immediate reflection doe
not appear explicitly in Eq.~40!. We will analyze below a
couple of simple special cases before drawing general c
clusions.

C. One d barrier

In this case we find immediately from Eqs.~40! (a5L
51 and we drop the subscriptL in the strength of the barrier!

S~k!5
sinke2 ik1lk

sinkeik1lk
, ~60a!

K~k!5
2 sin2k

sinkcosk1lk
, ~60b!

whereas

S̃~k!5
sink1lkeik

sink1lke2 ik
, ~61a!

R~k!522l
ksink

sink1lkcosk
. ~61b!

In Eqs.~61! the phased (D)(k)52k of the immediate reflec-
tion at the pointa is extracted. The two functionsK(k) and
R(k) are related to each other by

K~k!5
2 tank1R~k!

12~1/2!tankR~k!
.

The positions of the poles of the functionScoincide with
the complex roots of the equation

e2iz12 il z2150. ~62!

In the right half of thez plane they can be searched for in th
form zn5np1zn , where anyzn is restricted to the strip
uRe znu<p/2 and satisfies the equation

zn1
i

2
ln@122il~np1zn!#50. ~63!
5-8
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There also exists the trivial rootz50 but this root fully
cancels out. Even for not very largen one can omitzn in the
logarithmic term. This yields the approximate solution

zn>2
i

2
ln~122ilnp! ~64!

which is valid with good accuracy for almost all poles, bei
asymptotically exact whenn→`.

However, by no means all of the complex rootszn corre-
spond to resonances. For a pole to correspond to a long-l
resonance state, the following two additional conditions a
must be satisfied:~i! Re zn should be a real pole of the func
tion K(k) or at least should be close to such a pole;~ii ! the
corresponding residue should be small enough for the s
tering phased(k) to increase near this point byp in an
interval Dk!1. The validity of these conditions depends
the value of the parameterl. Indeed, the poles ofK(k) are
found from the equation

sink cosk1lk50. ~65!

There exists only afinite number of real roots 6kj , j
51,2, . . . ,j max, of this equation. They satisfy the requir
ment 2lkj,1 or, equivalently,kj,k/2. ~The trivial solution
k50 should be dismissed.! All other roots lie in the complex
plane and the phase does not reach its maximal value
though it can change rather fast if a pole ofK is still close to
the real axis. It is clear that they move away from this a
when uzu grows. In particular, no real solutions exist ifl
.l0'0.2 (k,k0'5). The scattering phased(k),p/2 in
this case and smoothly depends onk. The barrier is too weak
to form a long-lived resonance state. Whenkusink/ku,1 the
scattering phase can be calculated asd(k)'22k sin2 k/k1
••• in the framework of perturbation theory.

There are two kinds of real roots of Eq.~65! when l is
appreciably less thanl0. The most interesting caselkj
!1, although j @1, can easily be considered analytical
The first set consists of the rootskn which are close to the
points np: kn'(12l1l2)np, (np,1/l). Near such a
pole theK function manifests typical resonance behavior

K~k!'
2~lnp!2

k2kn
. ~66!

Strictly speaking, a similar contribution of the symmetr
root k2n52kn , which corresponds to the same energy«n

5kn
2 , should be added, so we arrive near thenth resonance

at

Kn~E!5
~2l!2~np!3

E2«n
. ~67!

Each neighboring pair of resonance roots is separated
root of the second set:km'@11(lmp)21#(m1 1

2 )p, in a
vicinity of which

K~k!'
2

k2km
. ~68!
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The residues are large in this case and such terms contr
to the smooth background part of the total scattering pha
Indeed, the ~dimensionless! time delay t(k)5dd(k)/dk
5tw /ut0u, which measures the Wigner time delaytw
52dd/dE in units of the ~negative! time delay t0
522a/(dE/dk) because of the immediate reflection at t
point a(51), is large near the pointskn but small whenk
'km . Poles of the two different kinds alternate and reson
and smooth contributions are mixed. Figure 1 clearly de
onstrates all the features described above.

Let us, on the other hand, consider the properties of
function R(k) @see Eq.~61!#. Its poles are the roots of th
equation

sink1l k cosk50 ~69!

instead of Eq.~65!. Contrary to the latter,all roots 6 k̃n of
Eq. ~69! are real. Those of them that satisfy the inequal
l k̃n!1 and, therefore, have numbersn,nmax are equal to
k̃n'(12l)np again and correspond to resonances. The
ference from the similar roots of Eq.~65! appears only at
higher order corrections in the parameterl. For largern,
when l k̃n@1, an infinite number of rootsk̃n'p(n1 1

2 )@1
1l21(np)22# exists, giving a smooth contribution, whic
combines with the phased0

(D)(k)52k and almost compen
sates it at largek @see Fig. 1~c!#. Indeed, thed barrier be-

FIG. 1. Oned-barrier model forl51/35. ~a! The time delay
t(k)5dd(k)/dk, ~b! K function, and~c! R function. Only a finite
number nres'@1/2pl#(55) of poles located near the point
pn, n51, . . . ,nres, correspond to long-lived resonance states;
others refer to the smooth phase of reflection at the pointa
(51).
5-9
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comes almost transparent when the collision energy is la
and the total scattering phase can be calculated by appl
perturbation theory.

The meromorphic character of the functionR(k) allows
us to represent this function in the form of the pole exp
sion

R~k!5 (
n52`

`
2

11l1~l k̃n!2

~l k̃n!2

k2 k̃n

52k(
n51

`
2

11l1~l k̃n!2

~l k̃n!2

k22 «̃n

. ~70!

The symmetry connectionk̃2n52 k̃n has been taken into
account in the second equality.

Returning to the poles ofS(k), we can expand the expres
sion ~64! in the resonant region 2lnp!1 with respect to
this parameter to calculate the poles

zn'~12l1l2!np2 i ~lnp!2 ~71!

and the complex energies of the resonance states

En'~122l13l2!~np!22
i

2
@4l2~np!3#. ~72!

Note that the widthsGn54l2(np)3 of the resonances ap
pear only in the second order in the penetrability parametel
when the shifts of their energies are of the first order
magnitude. The resonances are well isolated since the
Gn /(En112En)52p(ln)2!1. Finally, the remote poles
with n@1/2pl are given by

zn'S n2
1

4Dp2
i

2
ln~2lnp!2. ~73!

Now we compare our findings with the results~55!–~57! of
the general formalism. The normalized solutions of the in
nal problem with the BC~51! are readily found to be

un
0~r !5A 2

11lcos2kn

sin~knr !, ~74!

where kn are the roots of Eq.~69! which follows directly
from BC ~51! this time~we omit the tilde and note that onl
positive rootskn , n51,2, . . . , are to bekept!. This fact is
quite satisfactory and demonstrates the physical relevanc
the choice of BC made. Indeed, for such a BCun

0(a);l in
accordance with the exact boundary condition~53!. The Di-
richlet BC un

0(a)50 would be deficient in this sense. Wit
Eq. ~74! taken into account, we find from Eq.~56!

R~k!52k(
n51

`
2 cos2 kn

11l cos2 kn

~lkn!2

k22«n

. ~75!

Equivalence to Eq.~70! is seen from the relation cos2 kn
5@11(lkn)

2#21, which follows directly from the secula
equation Eq.~69!.
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Matrix elements of the operatorH @Eq. ~59!# are in our
case

H mn
(N)5kn

2dmn2 i2k
lkm

A11l1~lkm!2

lkn

A11l1~lkn!2
.

~76!

In the resonance domain,lkn&1, the diagonal matrix ele-
mentH nn

(N)(k5kn) approximates well the complex energyEn

of the resonance which lies near the scattering energE
'kn

2 . In this region off-diagonal elements influence on
corrections of higher orders. At the same time, the diago
approximation becomes insufficient for the remote pol
breaking down to reproduce exact asymptoticnlnn behavior
of the imaginary parts. Figure 2 illustrates the considerati

We therefore conclude that the extraction of the ph
d0

(D)(k) of the immediate reflection and utilization of theR
function is adequate only in the resonance region where s
a reflection is probable. Beyond this region the internal a
immediate reflection phase shifts almost compensate e
other so that the functionK(k) proves to be a more relevan
tool.

D. Resonance domain

Below, we restrict our attention to the resonance reg
well above the energyE5k250. To simplify the investiga-
tion further, we suggest assuming the strength constants t
the samel l5l1 , l 52,3, . . . ,L21, for all inner barriers. In
accordance with the results of the simple consideration p
sented at the end of Sec. IV C, segregation of the smo
phase of the immediate reflection meets expectations b
on physical intuition. To perform this segregation, we wr
first the scattering amplitudeT(k)5sTG(k)s as a block prod-
uct

T~k!5~sT, sL!S Ĝ F
FT GL

D S s

sL
D

5F ~lLk2sLeika!sT
1

l1kÎ1ĝ0
s1sN

2 GGL , ~77!

FIG. 2. Widths~in log scale! versus energies forl51/35. Exact
poles@from Eq. ~63!, h] and approximation@Eq. ~72!, L], com-
pared to the ‘‘diagonal’’ approximationHnn(k5kn) with Neumann
@from Eq. ~76!, 3] or Dirichlet BC @from Eq. ~97!, 1]. The inset
shows the asymptotic region of remote poles, where the diag
approximation breaks down.
5-10
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where the symbolsĜ andF, etc., stand for (L21)3(L
21) submatrices and (L21)-dimensional vectors, respec
tively, and ĝ0 is the similar upper left block ofg0. To pass
from the first to the second line, the relations

sTĜs52~lLke2 ika1sL! sTF

and

sTF5FTs52eikasT
1

l1kÎ1ĝ0
s

have been used, which follow, together with the express

GL52FlLke2 ika1sL2eikasT
1

l1kÎ1ĝ0
sG21

e2 ika,

from the equation (kl1g0)G(k)52. We notice now that the
function

T`~k!5sT
2

l1kÎ1ĝ0
s ~78!

coincides with the amplitude of scattering on the poten
~36! with the last barrier being removed:kL50 or, in other
words, lL5`. Finally, we obtain after simple transforma
tions S(k)5S̃(k)e22ikL, where

S̃~k!5
e22ikL2~112ilLk!S`~k!

~122ilLk!e22ikL2S`~k!

5
sin~d`1ka!1lLkei (d`1ka)

sin~d`1ka!1lLke2 i (d`1ka)
. ~79!

The poles of the functionS̃(k) @as well as ofS(k)] in the
complexk plane are given by the zeros of the denominato
is convenient to introduce in parallel with this function
sequence of functionsS̃( l )(k)[S( l )(k)e2i lk which describe
the scattering on chains ofl barriers with the penetrability
constantl1 and the BC fixed at the radiusa5 l . In particular,
S̃(L)(k)[S̃(k), S̃(L21)(k)[S`(k)e2i (L21)k, and S̃(0)(k)
[1. These functions are related to each other by a recur

S̃( l )~k!5
12~112il1k!e2ikS̃( l 21)~k!

122il1k2e2ikS̃( l 21)~k!
. ~80!

Using as before the ansatzzm5mp1zm in the resonance
regionl1,Luzu'l1,Lumup!1, we arrive at an algebraic equa
tion P (L)(e2i zm)50, with P(w) being a polynomial of the
Lth power with respect to the argumentw5e2i zm. This equa-
tion gives a bunch ofL close complex poles of theS function
well separated from all the other poles.

The correspondingR function is readily found from Eq.
~79! to be
02621
n

l

It

on

R~k!52
2

1/lLk1cot~d`1ka!
. ~81!

In the limit lL→0 ~closed interior! we haveR(k)[0 and
S̃(k)[1, so that only the immediate reflection at the poina
survives. Obviously, the spectrum of the poles of the fu
tion R(k) is determined by the equation

sin~d`1ka!1lLk cos~d`1ka!50 ~82!

which should be compared with Eq.~69!. It is easy to check
that the spectrum exactly coincides with that of the wa
numbers of the internal problem for the potentialU`(r )
5k1( l 51

L21d(r 2 l ) with the BC ~51!. This potential is per-
fectly transparent on the separation radiusa5L where the
latter condition is fixed. This directly follows from the ex
pression

u0~r !5sin~kr !2
1

2
T`~k!eikr5

i

2
@e2 ikr2S`~k!eikr #

~83!

for the wave function in the region (L21),r<a5L.

E. Two d barriers; resonance trapping

Now we will use the formulas just found to analyze as
illustrative example resonances in the double-welld poten-
tial, L52. The equation for the poles of theS function ~79!
looks in this case like

~112il1z!e4iz22~122il2z!e2iz

1~122il1z!~122il2z!50 ~84!

@cf. Eq. ~62!#. Again, the ansatzzm5mp1zm with uRe zmu
<p/2 is valid. Supposing also the integer numberm to be
appreciably large, we arrive for each fixedm at a couple of
closed solutions@compare with Eq.~64!#

zm'2
i

2
lnH 12 i

~2l11l2! mp

112il1mp

3F16A12
4l1l2

~2l11l2!2
~112il1mp!G J .

~85!

It is worth noting that within the approximation adopted t
sum of the imaginary partsIm (zm

11zm
2)52 1

2 lnuZm
1Zm

2u
521

2lnA114l2
2(mp)2, whereZm

6 stand for the argument
of the logarithm in Eq.~85!, does not dependon the penetra-
bility constant l1 of the interior barrier. Indeed, simpl
transformations show that Zm

1Zm
25@(122il1mp)/

(112il1mp)#(122il2mp).
We fix now the numberm@1 within the resonance do

main, l1,2umpu!1, and consider the doublet of poles clo
to this point. Keeping the terms of the two first orders
magnitude we find
5-11
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zm
6'2

1

2
~2l11l26A4l1

21l2
2!mp

2
i

2
l2

2S 16
l2

A4l1
21l2

2D ~mp!2. ~86!

In the resonance region, the splittinguDzmu5uDzmu
'A4l1

21l2
2 within a given doublet is much smaller than th

distance between adjacent doublets which is;p.
Equation~81! reads in the caseL52

R~k!52
2l2k~sin2 k1l1k sin 2k!

sin2k1
1

2
~2l11l2!k sin 2k1l1l2k2 cos 2k

.

~87!

For the mth resonance doubletkm5mp1dkm , and the
small shiftdkm satisfies the quadratic equation

~dkm!21~2l11l2!~mp!dkm1l1l2~mp!250, ~88!

giving immediatelydkm
65Re zm

6 , with zm
6 from ~86!.

This convinces us that each resonance doublet with g
accuracy can be considered independently of the other p
Near a givenkm5mp within the resonance region the fun
tion R(mp1dk)[Rm(k) is decomposed into a sum of tw
partial fractions

Rm~k!5
gm

1

k2km
1

1
gm

2

k2km
2

, ~89!

the residues being found to be equal togm
6522 Im zm

6 .
To pass from thek to the energy plane, the termR2m(k)

must be added, which yields

Rm~E!5
Gm

1

E2«m
1

1
Gm

2

E2«m
2

5Am
T 1

E2«m
(N)

Am . ~90!

The two-dimensional vectorAm
T 5(AGm

1,AGm
2) and the ma-

trix «m
(N)5diag («m

1 ,«m
2) of the internal levels«m

65(km
6)2 of

the doublet have been introduced in the last step.
The corresponding representation of the scattering am

tude near the scattering energyE'km
2 is as follows:

T̃m~E!5Am
T 1

E2~Heff
(N)!m

Am . ~91!

In these formulasGm
652AE gm

6'2pmgm
6 , i.e., we have ne-

glected the change of the scattering energyE within the dou-
blet considered. The difference betweenkm

6 contributes only
at higher orders. This is contrary to the case of widths fr
different doublets whenkm differ from each other already in
the zero order inl1,2. In such an approximation, both func
tions Rm(E) and T̃m(E) become meromorphic in the com
plex energy plane.

By the very construction, the complex eigenvalues of
two-dimensionalenergy-independentsymmetric matrix
02621
d
es.

li-

e

Heff
(N)5« (N)2

i

2
ÃÃT ~92!

coincide with the complex energies of the two resonance
the doublet considered. Henceforth, we drop the indexm of
the doublet to avoid too bulky notation. The energies«6 are
the levels of the internal problem for the potentialU`

(2)(r )
5k1d(r 2a) with the BC ~51! whereas the amplitudes ar
given by Eq.~58!, with the wave numberk substituted by
mp. Just the energy-independent matrix~92! is naturally in-
terpreted as an effective non-Hermitian Hamiltonian. The
tion of the effective Hamiltonian is valid, however, on
within a fixed doublet. Similarly, in the caseL51 the ‘‘ef-
fective Hamiltonian’’ coincides with the corresponding dia
onal matrix element of the formal operatorH constructed in
Sec. III.

As we have already mentioned above, the total widthG
5G11G2'4l2

2(mp)3 of the doublet remains constant a
long as the openness of the system is fixed. At the same t
the individual widths depend also on the ratiol1 /l2. A re-
markable redistributionof the total width between member
of the doublet takes place when this parameter chan
When the system is almost closed,l2!l1,

E1'~124l12l2!~mp!2,

E2'~12l2!~mp!2, G6'2l2
2~mp!3. ~93!

Both levels have similar widths in this case. However, in t
opposite limitl2@l1 the state that exists in the outer we
appropriates almost the whole total width

E1'~122l222l1!~mp!2, G1'4~l2
22l1

2!~mp!3,
~94!

E2'~122l1!~mp!2, G2'4l1
2~mp!3.

Simultaneously, the energyE1 of the broader resonance ge
strongly displaced due to the coupling to the energy c
tinuum. The other resonance turns out to be trapped in
inner well. Figure 3 illustrates the behavior just describ
For an arbitrary ratio l1 /l2, the complex energies of th
two resonances of a doublet are separated by a dist
which is large on the scale of the total width@35#. For this
reason, the off-diagonal matrix elements of the an
Hermitian part of the effective Hamiltonian~92! give only
corrections of higher order and can therefore be neglected
spite of the nontrivial behavior of the complex levels ju
described the resonances may still be considered separ
of each other within the given accuracy.

Extension to the general case of arbitrary numberL of
barriers is now straightforward. The effective Hamiltonia
appears as anL3L block of the operatorH, which describes
a fixed bunch ofL close resonance states. It is important th
energy dependence can be fully neglected within suc
bunch.
5-12



th
rn
ie
at

os
ou
it

fi

is

to
ion
q.

the
i-

o

e

e
be-

f

IS THE CONCEPT OF THE NON-HERMITIAN . . . PHYSICAL REVIEW E67, 026215 ~2003!
F. Internal problem with Dirichlet BC

The internal problem with the BC~51! does not corre-
spond to a finite motion of a quantum particle even when
coupling matrix elements are neglected. Indeed, the inte
solution is sensitive to the penetrability of the outer barr
Meanwhile, in numerous applications the intuitively most
tractive convention, which goes back to the textbook@7#, is
adopted, to using as an internal basis the states of a cl
counterpart of the system under consideration. Such a c
terpart can hardly be defined uniquely but, in our case,
natural to fix it by choosing the Dirichlet BC at the pointr
5a. This corresponds to the internal problem with an in
nitely hard wall put at the pointr 5a. The formalism of Sec.
II gives then

S~k!5
12~ i /lLk!@11lLGint

(D)9~a,a!#

11 ~ i /lLk! @11lLGint
(D)9~a,a!#

S0
(N) ~95a!

5
11@lL /~11 ilLk!#Gint

(D)9~a,a!

11@lL /~12 ilLk!#Gint
(D)9~a,a!

11 ilLk

12 ilLk
S0

(D) .

~95b!

Comparison with the closed solution~55! and ~79! shows
that

cot~d`1ka!5
1

k
Gint

(D)9~a,a!5
1

k (
n

vn
08~a2!vn

08~a!

k22«n
(D)

,

~96!

which implies that the spectrum of the internal problem
given by the equation sin(d`1ka)50 instead of Eq.~82!.
Unlike the eigenvalues«n

(N) , the levels«n
(D) do not depend

on lL .

FIG. 3. Widths~in log scale! versus energies for a doublet o
resonances withm510 as ~a! l1 /l2 is varied from 0.1 to 10
~marked withd) at fixedl150.001; ~b! l1 /l2 is varied from 1 to
10 ~marked withd) at fixedl250.001.
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Similar to Eqs. ~55!–~57!, we haveS(k)5S̄(k)S0(k),
with S0 from Eq. ~54!, and S̄(k)512 iĀT@k22H (D)#21Ā,
where

H mn
(D)5«m

(D)dmn2
lL

12 ilLk
vm

0 8~a!vn
08~a!

5«m
(D)dmn2

1

2lLk
ĀmĀn2

i

2
ĀmĀn ~97!

and

Ān5lLA 2k

11lL
2k2

vn
08~a!. ~98!

This should be compared with Eq.~58! and ~59!. Not only
widths but also Hermitian shifts result from the coupling
the external region this time. Indeed, in the resonance reg
lLk!1 the phases that come from the first two factors in E
~95b! are equal approximately to

d̄~k!'2lL
2k

Gint
(D)9~a,a!

11lLGint
(D)9~a,a!

, dlL
~k!'lLk.

The two contributions perfectly compensate each other at
pointskn

25«n
(D) . Within a bunch of resonance levels the e

genvalues of the Hermitian part ofHeff
(D) coincide in the main

approximation with the corresponding levels«n
(N) . In gen-

eral, the connectiond̃(k)5 d̄(k)1dlL
(k) holds for arbitrary

k.
Let us first return to the caseL52, for a moment. The

amplitudes~98! for the mth doublet are easily calculated t
be in the main approximationĀ6'6A2l2(mp)3/2, when
the corresponding internal levels are«1

(D)'(124l1)(mp)2

and «2
(D)5(mp)2. Therefore, the diagonal elements of th

effective Hamiltonian of the doublet are equal to

E 6
(0)'H ~124l12l2!~mp!22 il2

2~mp!3

~12l2!~mp!22 il2
2~mp!3,

~99!

which exactly coincide with Eq.~93!. Off-diagonal elements
of Heff

(D) can be neglected ifl2!l1. These elements becom
important, however, when the coupling to the continuum
comes strong,l2*l1. The two resonances~99! interfere in
this case. Diagonalization of the 232 matrix Heff

(D) gives
now

E6'@122l12l27A4l1
21l2

2#~mp!2

2 il2
2S 16

l2

A4l1
21l2

2D ~mp!3. ~100!

In the limit l2@l1 this reduces to Eq.~94!.
For an arbitrary numberL of barriers, themth bunch ofL

close resonances is described by theL3L submatrixHeff
(D) of
5-13
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the infinite matrix~97!, with the wave numberk being sub-
stituted by km'mp. The absolute values of the couplin
amplitudes within such a resonance bunch are estimate
uĀnu'2lL(mp)3/2/AL. The total collective width Gc

(m)

5( l 51
L Āl

2[Ā2'4lL
2(mp)3 of the bunch, which is deter

mined by the trace of the anti-Hermitian part ofHeff
(D) , char-

acterizes the openness of the system and does not depe
the penetrability constantl1 of the internal barriers. The
same is valid in the main approximation regarding the c
lective real energy displacementdec

(m)[2lL(mp)2

'Gc
(m)/2lLmp. When this displacement is small in compa

son with the total energy spread of the internal leve
dec

(m)!D (m)(« (D)), the bunch consists ofL independent nar-
row resonances

E n
(m)'«n

(D)2
1

L
dec

(m)2
i

2

1

L
Gc

(m) . ~101!

Note that the Hermitian shift does not influence the le
spacings but changes only the position of the bunch.

Under the opposite condition,dec
(m)@D (m)(« (D)), the

doorway basis in which the interaction matrixĀĀT is diag-
onal becomes more adequate@23# than the basis of the inter
nal problem used up to now~see also@36#!. The latter matrix
is diagonalized by an orthogonal transformationh
5(h(1) h(2)

•••h(L)), where each entryh( l ) is a real vector
in the L-dimensional part of the total Hilbert space, whic
corresponds to the considered bunch. Due to the factor
structure, the interaction matrix possesses the only non
eigenvalueGc

(m)5Ā2, which belongs to the eigenvecto

h(1)5a[Ā/AĀ2. As a result, the effective Hamiltonian ob
tains in the doorway basis the form~we drop below the index
m of the bunch!

Heff
(D)5S ec2

i

2
Gc hT

h ê
D . ~102!

The following notation has been used herem
52,3, . . . ,L):

ec5(
l

« l
(D)al

222lL~mp!25^« l
(D)&2dec ,

~103!

hm5(
l

« l
(D)alh l

(m) ,

with the L21 vectorsh(m) and elementsem of the diagonal
matrix ê being defined by the eigenvalue problem

(
n

«n
(D)hn

(m)hn
(n)5emdmn ~104!

in the (L21)-dimensional subspace orthogonal to the vec
a. The quantitŷ « l

(D)& is the weighted mean position of th
internal levels. The non-Hermitian Hamiltonian~102! de-
scribes a widedoorway resonance with widthGc displaced
02621
as

on

l-

,

l

ed
ro

r

from the bunch by the distancedec and coupled to a back
ground of L21 stable states by means of the matrix e
mentshm . Only due to this interaction do such states g
access to the continuum via the doorway state existing in
outer well.

With the help of the completeness condition

(
m

h l
(m)h l 8

(m)
5d l l 82alal 8 ~105!

one finds from Eq.~104!

h l
(m)52hm

1

em2« l
(D)

al . ~106!

The orthogonality conditiona•h(m)50 immediately gives
the equation

(
l

al
2

em2« l
(D)

50 ~107!

for the new positions of the stable levels. This equat
shows that each new levelem lies between two neighboring
old ones« l

(D) and therefore is shifted with respect to th
latter only by a distance comparable with the initial me
level spacing. This is much smaller than the displacem
dec of the collective levelec .

The interactionh mixes these states and formsL final
resonance states. The complex energies of the exact s
i.e., the eigenvalues of the effective Hamiltonian~102!, sat-
isfy the secular equation

E5ec2
i

2
Gc1(

m

hm
2

E2em
. ~108!

In particular, for the collective doorway state one obta
from this equation

Ecoll'^« l
(D)&2F12

h2

~dec!
2Gdec2

i

2 F12
h2

~dec!
2GGc .

~109!

Equations~103! and ~105! allow us to express the squar
lengthh2 of the mixing vector in terms of the variance of th
nonperturbed internal levels,

h25(
l

~« l
(D)!2 al

22S (
l

« l
(D)al

2D
5Š~« (D)2^« (D)&!2

‹5@D« (D)#2. ~110!

Thus, interaction is weak in the doorway basis under
condition dec@D« (D) and the doorway state keeps almo
the whole energy displacement and width. All other states
trapped in the interior region and share small portio
;@D« (D)/dec#

2 of the collective displacement and width i
accordance with the group velocity@23#. The solution just
5-14
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described has formally very much in common with the sc
matic model of the so-called nuclear dipole giant resona
developed in@36,37#.

V. CONCLUSION

In this paper we analyzed the relevance of the concep
the non-Hermitian effective Hamiltonian in finite-range p
tential scattering. Single-channels-wave resonance scatterin
is considered as an example. The scattering functionS(k) is
meromorphic in this case, i.e., has only isolated poles in
complex plane of the wave numbers. The number of pole
generally, infinite but only a finite part of them can be inte
preted as resonances.

We first presented~Secs. II and III! a consistent self-
adjoint formulation of the scattering problem, which is bas
on separation of the configuration space into internal
external segments. In this way, theS(k) function is repre-
sented in terms of a non-Hermitian energy-dependent op
tor H(k). There exists a wide freedom in choosing the rad
a of separation as well as the boundary conditions at
point. Different choices yield different explicit forms of thi
operator together with theS(k) and R(k) functions. This
can, in particular, come out strongly if one truncates the m
trix H to calculate numerically the positions of the poles
theS function in the complexk plane. Nevertheless, the tru
complex poles of theS function and this function itself de
pend, as we explicitly demonstrate, neither on the BC nor
the radiusa.

Although all choices are formally allowed, this does n
mean that they are equally adequate from the physical p
of view. For instance, a fictitious immediate reflection tak
place at the~arbitrarily chosen! point of separationa. The
artificial separation of the phase of this reflection results
turn, in the appearance of an infinite number of remote po
of the functionR(k), which describe the smooth contributio
from the interior regionr ,a. The phase of the immediat
reflection must be compensated by the contributions of s
poles for the radiusa to disappear finally from the scatterin
amplitude. This can cause unjustified complications in in
mediate stages of the calculations. We argue that the har
minimized if the separation radius matches an outer poten
barrier when it is strong enough to make immediate refl
tion at this point quite probable.

The notion of the non-Hermitian effective Hamiltonia
first introduced in the theory of resonance nuclear reacti
emerges when a group of very close resonance st
strongly overlap and interfere. We stress that, in contras
the nuclear reactions, in the cases of the potential reson
scattering usually discussed in the literature the density
the energy spectrum is too low and the ordinary Bre
Wigner approximation of isolated resonances usually s
fices. The complex energy of themth resonance which domi
nates in the scattering amplitudes near the scattering en
E'uzmu2 is well approximated by the diagonal matrix el
mentHmm(uzmu). There is no room for an effective Hami
tonian in this case or, more strictly, it is embodied by the
31 ‘‘matrix’’ Hmm. We emphasize that the energ
dependent operatorH(k) should not be confused with th
02621
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effective Hamiltonian. Energy-dependent eigenvalues of
operator are not, generally, in one-to-one corresponde
with the complex energies of the actual resonance states

Overlap and interference of the resonances can bec
possible in the cases when the energy spectrum has a
structure. As an example of this kind we investigate a pe
odically disposed chain of a finite numberL of radial d bar-
riers. All S, K, andR functions are found in closed forms i
terms of anL3L k-dependent matrix propagator. This allow
us to study in detail all analytical properties in the complek
plane and to verify the correspondence with the project
formalism used. There exist a finite number of separa
bands of close resonances. Within themth band which lie
near the scattering energyE'uzmu2 one can neglect al
smooth variations withk. In this approximation, the men
tioned propagator proved to coincide with the resolvent
theL3L blockHl l 8(uzmu) of the matrixH mn

(N)(k) taken at the
fixed value k5uzmu. Just this matrix plays the role of th
effective Hamiltonian of the system in the energy interv
within the band.

Different choices of BCs yield different patterns of th
resonance interference. In particular, the spectrum of
poles of theR function is exactly reproduced in the frame
work of the projection technique with the BC~51! of Neu-
mann type fixed at the positiona5L of the outer barrier. The
corresponding energy levels depend on the penetrability c
stantlL of the outer barrier. Shifts of the levels due to th
coupling to the continuum are included in this case from
very beginning.

Utilization of the Dirichlet BC for the intrinsic motion
gives another but equivalent formulation of the scatter
problem considered. The internal problem in this case fixe
closed counterpart of the open system under considera
This enables us to investigate the change of regime of
internal motion of the system as its openness grows.
interaction via the continuum shifts the origin
lL-independent levels of the internal motion along both r
and imaginary axes. A transition is explicitly demonstrat
from the bunch ofL similar narrow resonances to the form
tion of a relatively broad resonance strongly shifted w
respect to the band, which exists in the outer well. The ot
resonances turn out to be trapped in the inner part of
system. This is quite similar to the results of earlier inves
gations which rely upon the notion of the non-Hermitia
effective Hamiltonian of an open system.
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